Copied to
clipboard

?

G = C42.141D10order 320 = 26·5

141st non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.141D10, C10.902- (1+4), C4.33(D4×D5), (C4×D5).12D4, C4.4D49D5, C20.62(C2×D4), C202Q830C2, D10.80(C2×D4), (C2×D4).172D10, C42⋊D520C2, (C2×C20).80C23, (C2×Q8).136D10, C22⋊C4.35D10, Dic5.91(C2×D4), C10.89(C22×D4), Dic5⋊Q824C2, C20.17D424C2, (C2×C10).219C24, (C4×C20).185C22, C4⋊Dic5.51C22, D10.12D441C2, C23.41(C22×D5), (D4×C10).154C22, (C22×C10).49C23, (Q8×C10).126C22, C22.240(C23×D5), Dic5.14D440C2, C23.D5.54C22, C54(C23.38C23), (C4×Dic5).141C22, (C2×Dic5).114C23, (C22×D5).224C23, C2.51(D4.10D10), D10⋊C4.110C22, (C2×Dic10).183C22, C10.D4.120C22, (C22×Dic5).142C22, (C2×Q8×D5)⋊10C2, C2.62(C2×D4×D5), (C5×C4.4D4)⋊11C2, (C2×C4×D5).129C22, (C2×D42D5).11C2, (C2×C4).194(C22×D5), (C2×C5⋊D4).59C22, (C5×C22⋊C4).64C22, SmallGroup(320,1347)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.141D10
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — C42.141D10
C5C2×C10 — C42.141D10

Subgroups: 926 in 270 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×12], C22, C22 [×10], C5, C2×C4, C2×C4 [×4], C2×C4 [×19], D4 [×6], Q8 [×10], C23 [×2], C23, D5 [×2], C10, C10 [×2], C10 [×2], C42, C42, C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×10], C22×C4 [×5], C2×D4, C2×D4 [×2], C2×Q8, C2×Q8 [×8], C4○D4 [×4], Dic5 [×2], Dic5 [×6], C20 [×2], C20 [×4], D10 [×2], D10 [×2], C2×C10, C2×C10 [×6], C42⋊C2, C22⋊Q8 [×4], C22.D4 [×4], C4.4D4, C4.4D4, C4⋊Q8 [×2], C22×Q8, C2×C4○D4, Dic10 [×8], C4×D5 [×4], C4×D5 [×4], C2×Dic5, C2×Dic5 [×6], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20, C2×C20 [×4], C5×D4 [×2], C5×Q8 [×2], C22×D5, C22×C10 [×2], C23.38C23, C4×Dic5, C10.D4 [×6], C4⋊Dic5 [×4], D10⋊C4 [×2], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×4], C2×Dic10 [×2], C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×2], D42D5 [×4], Q8×D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, Q8×C10, C202Q8, C42⋊D5, Dic5.14D4 [×4], D10.12D4 [×4], C20.17D4, Dic5⋊Q8, C5×C4.4D4, C2×D42D5, C2×Q8×D5, C42.141D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2- (1+4) [×2], C22×D5 [×7], C23.38C23, D4×D5 [×2], C23×D5, C2×D4×D5, D4.10D10 [×2], C42.141D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 21 11 31)(2 32 12 22)(3 23 13 33)(4 34 14 24)(5 25 15 35)(6 36 16 26)(7 27 17 37)(8 38 18 28)(9 29 19 39)(10 40 20 30)(41 143 51 153)(42 154 52 144)(43 145 53 155)(44 156 54 146)(45 147 55 157)(46 158 56 148)(47 149 57 159)(48 160 58 150)(49 151 59 141)(50 142 60 152)(61 131 71 121)(62 122 72 132)(63 133 73 123)(64 124 74 134)(65 135 75 125)(66 126 76 136)(67 137 77 127)(68 128 78 138)(69 139 79 129)(70 130 80 140)(81 116 91 106)(82 107 92 117)(83 118 93 108)(84 109 94 119)(85 120 95 110)(86 111 96 101)(87 102 97 112)(88 113 98 103)(89 104 99 114)(90 115 100 105)
(1 79 86 49)(2 60 87 70)(3 61 88 51)(4 42 89 72)(5 63 90 53)(6 44 91 74)(7 65 92 55)(8 46 93 76)(9 67 94 57)(10 48 95 78)(11 69 96 59)(12 50 97 80)(13 71 98 41)(14 52 99 62)(15 73 100 43)(16 54 81 64)(17 75 82 45)(18 56 83 66)(19 77 84 47)(20 58 85 68)(21 129 111 151)(22 142 112 140)(23 131 113 153)(24 144 114 122)(25 133 115 155)(26 146 116 124)(27 135 117 157)(28 148 118 126)(29 137 119 159)(30 150 120 128)(31 139 101 141)(32 152 102 130)(33 121 103 143)(34 154 104 132)(35 123 105 145)(36 156 106 134)(37 125 107 147)(38 158 108 136)(39 127 109 149)(40 160 110 138)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 30 31 40)(22 39 32 29)(23 28 33 38)(24 37 34 27)(25 26 35 36)(41 56 51 46)(42 45 52 55)(43 54 53 44)(47 50 57 60)(48 59 58 49)(61 76 71 66)(62 65 72 75)(63 74 73 64)(67 70 77 80)(68 79 78 69)(81 90 91 100)(82 99 92 89)(83 88 93 98)(84 97 94 87)(85 86 95 96)(101 110 111 120)(102 119 112 109)(103 108 113 118)(104 117 114 107)(105 106 115 116)(121 136 131 126)(122 125 132 135)(123 134 133 124)(127 130 137 140)(128 139 138 129)(141 160 151 150)(142 149 152 159)(143 158 153 148)(144 147 154 157)(145 156 155 146)

G:=sub<Sym(160)| (1,21,11,31)(2,32,12,22)(3,23,13,33)(4,34,14,24)(5,25,15,35)(6,36,16,26)(7,27,17,37)(8,38,18,28)(9,29,19,39)(10,40,20,30)(41,143,51,153)(42,154,52,144)(43,145,53,155)(44,156,54,146)(45,147,55,157)(46,158,56,148)(47,149,57,159)(48,160,58,150)(49,151,59,141)(50,142,60,152)(61,131,71,121)(62,122,72,132)(63,133,73,123)(64,124,74,134)(65,135,75,125)(66,126,76,136)(67,137,77,127)(68,128,78,138)(69,139,79,129)(70,130,80,140)(81,116,91,106)(82,107,92,117)(83,118,93,108)(84,109,94,119)(85,120,95,110)(86,111,96,101)(87,102,97,112)(88,113,98,103)(89,104,99,114)(90,115,100,105), (1,79,86,49)(2,60,87,70)(3,61,88,51)(4,42,89,72)(5,63,90,53)(6,44,91,74)(7,65,92,55)(8,46,93,76)(9,67,94,57)(10,48,95,78)(11,69,96,59)(12,50,97,80)(13,71,98,41)(14,52,99,62)(15,73,100,43)(16,54,81,64)(17,75,82,45)(18,56,83,66)(19,77,84,47)(20,58,85,68)(21,129,111,151)(22,142,112,140)(23,131,113,153)(24,144,114,122)(25,133,115,155)(26,146,116,124)(27,135,117,157)(28,148,118,126)(29,137,119,159)(30,150,120,128)(31,139,101,141)(32,152,102,130)(33,121,103,143)(34,154,104,132)(35,123,105,145)(36,156,106,134)(37,125,107,147)(38,158,108,136)(39,127,109,149)(40,160,110,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36)(41,56,51,46)(42,45,52,55)(43,54,53,44)(47,50,57,60)(48,59,58,49)(61,76,71,66)(62,65,72,75)(63,74,73,64)(67,70,77,80)(68,79,78,69)(81,90,91,100)(82,99,92,89)(83,88,93,98)(84,97,94,87)(85,86,95,96)(101,110,111,120)(102,119,112,109)(103,108,113,118)(104,117,114,107)(105,106,115,116)(121,136,131,126)(122,125,132,135)(123,134,133,124)(127,130,137,140)(128,139,138,129)(141,160,151,150)(142,149,152,159)(143,158,153,148)(144,147,154,157)(145,156,155,146)>;

G:=Group( (1,21,11,31)(2,32,12,22)(3,23,13,33)(4,34,14,24)(5,25,15,35)(6,36,16,26)(7,27,17,37)(8,38,18,28)(9,29,19,39)(10,40,20,30)(41,143,51,153)(42,154,52,144)(43,145,53,155)(44,156,54,146)(45,147,55,157)(46,158,56,148)(47,149,57,159)(48,160,58,150)(49,151,59,141)(50,142,60,152)(61,131,71,121)(62,122,72,132)(63,133,73,123)(64,124,74,134)(65,135,75,125)(66,126,76,136)(67,137,77,127)(68,128,78,138)(69,139,79,129)(70,130,80,140)(81,116,91,106)(82,107,92,117)(83,118,93,108)(84,109,94,119)(85,120,95,110)(86,111,96,101)(87,102,97,112)(88,113,98,103)(89,104,99,114)(90,115,100,105), (1,79,86,49)(2,60,87,70)(3,61,88,51)(4,42,89,72)(5,63,90,53)(6,44,91,74)(7,65,92,55)(8,46,93,76)(9,67,94,57)(10,48,95,78)(11,69,96,59)(12,50,97,80)(13,71,98,41)(14,52,99,62)(15,73,100,43)(16,54,81,64)(17,75,82,45)(18,56,83,66)(19,77,84,47)(20,58,85,68)(21,129,111,151)(22,142,112,140)(23,131,113,153)(24,144,114,122)(25,133,115,155)(26,146,116,124)(27,135,117,157)(28,148,118,126)(29,137,119,159)(30,150,120,128)(31,139,101,141)(32,152,102,130)(33,121,103,143)(34,154,104,132)(35,123,105,145)(36,156,106,134)(37,125,107,147)(38,158,108,136)(39,127,109,149)(40,160,110,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36)(41,56,51,46)(42,45,52,55)(43,54,53,44)(47,50,57,60)(48,59,58,49)(61,76,71,66)(62,65,72,75)(63,74,73,64)(67,70,77,80)(68,79,78,69)(81,90,91,100)(82,99,92,89)(83,88,93,98)(84,97,94,87)(85,86,95,96)(101,110,111,120)(102,119,112,109)(103,108,113,118)(104,117,114,107)(105,106,115,116)(121,136,131,126)(122,125,132,135)(123,134,133,124)(127,130,137,140)(128,139,138,129)(141,160,151,150)(142,149,152,159)(143,158,153,148)(144,147,154,157)(145,156,155,146) );

G=PermutationGroup([(1,21,11,31),(2,32,12,22),(3,23,13,33),(4,34,14,24),(5,25,15,35),(6,36,16,26),(7,27,17,37),(8,38,18,28),(9,29,19,39),(10,40,20,30),(41,143,51,153),(42,154,52,144),(43,145,53,155),(44,156,54,146),(45,147,55,157),(46,158,56,148),(47,149,57,159),(48,160,58,150),(49,151,59,141),(50,142,60,152),(61,131,71,121),(62,122,72,132),(63,133,73,123),(64,124,74,134),(65,135,75,125),(66,126,76,136),(67,137,77,127),(68,128,78,138),(69,139,79,129),(70,130,80,140),(81,116,91,106),(82,107,92,117),(83,118,93,108),(84,109,94,119),(85,120,95,110),(86,111,96,101),(87,102,97,112),(88,113,98,103),(89,104,99,114),(90,115,100,105)], [(1,79,86,49),(2,60,87,70),(3,61,88,51),(4,42,89,72),(5,63,90,53),(6,44,91,74),(7,65,92,55),(8,46,93,76),(9,67,94,57),(10,48,95,78),(11,69,96,59),(12,50,97,80),(13,71,98,41),(14,52,99,62),(15,73,100,43),(16,54,81,64),(17,75,82,45),(18,56,83,66),(19,77,84,47),(20,58,85,68),(21,129,111,151),(22,142,112,140),(23,131,113,153),(24,144,114,122),(25,133,115,155),(26,146,116,124),(27,135,117,157),(28,148,118,126),(29,137,119,159),(30,150,120,128),(31,139,101,141),(32,152,102,130),(33,121,103,143),(34,154,104,132),(35,123,105,145),(36,156,106,134),(37,125,107,147),(38,158,108,136),(39,127,109,149),(40,160,110,138)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,30,31,40),(22,39,32,29),(23,28,33,38),(24,37,34,27),(25,26,35,36),(41,56,51,46),(42,45,52,55),(43,54,53,44),(47,50,57,60),(48,59,58,49),(61,76,71,66),(62,65,72,75),(63,74,73,64),(67,70,77,80),(68,79,78,69),(81,90,91,100),(82,99,92,89),(83,88,93,98),(84,97,94,87),(85,86,95,96),(101,110,111,120),(102,119,112,109),(103,108,113,118),(104,117,114,107),(105,106,115,116),(121,136,131,126),(122,125,132,135),(123,134,133,124),(127,130,137,140),(128,139,138,129),(141,160,151,150),(142,149,152,159),(143,158,153,148),(144,147,154,157),(145,156,155,146)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
00140340
00014034
00340270
00034027
,
0400000
100000
00303200
0091100
00003032
0000911
,
32170000
1790000
000077
00003440
00343400
007100
,
9240000
24320000
000077
00004034
00343400
001700

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,14,0,34,0,0,0,0,14,0,34,0,0,34,0,27,0,0,0,0,34,0,27],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,30,9,0,0,0,0,32,11,0,0,0,0,0,0,30,9,0,0,0,0,32,11],[32,17,0,0,0,0,17,9,0,0,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,7,34,0,0,0,0,7,40,0,0],[9,24,0,0,0,0,24,32,0,0,0,0,0,0,0,0,34,1,0,0,0,0,34,7,0,0,7,40,0,0,0,0,7,34,0,0] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I···4N5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222222444444444···45510···101010101020···2020202020
size1111441010224444101020···20222···288884···48888

50 irreducible representations

dim1111111111222222444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2D4D5D10D10D10D102- (1+4)D4×D5D4.10D10
kernelC42.141D10C202Q8C42⋊D5Dic5.14D4D10.12D4C20.17D4Dic5⋊Q8C5×C4.4D4C2×D42D5C2×Q8×D5C4×D5C4.4D4C42C22⋊C4C2×D4C2×Q8C10C4C2
# reps1114411111422822248

In GAP, Magma, Sage, TeX

C_4^2._{141}D_{10}
% in TeX

G:=Group("C4^2.141D10");
// GroupNames label

G:=SmallGroup(320,1347);
// by ID

G=gap.SmallGroup(320,1347);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,675,297,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽